Second-order entropy diminishing scheme for the Euler equations
نویسندگان
چکیده
منابع مشابه
Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations
We consider a Control Volume Finite Elements (CVFE) scheme for solving possibly degenerated parabolic equations. This scheme does not require the introduction of the so-called Kirchhoff transform in its definition. The discrete solution obtained via the scheme remains in the physical range whatever the anisotropy of the problem, while the natural entropy of the problem decreases with time. More...
متن کاملEntropy-bounded discontinuous Galerkin scheme for Euler equations
Article history: Received 17 November 2014 Received in revised form 17 March 2015 Accepted 17 April 2015 Available online 28 April 2015
متن کاملA Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity
We present a well-balanced, second order, Godunov-type finite volume scheme for compressible Euler equations with gravity. By construction, the scheme admits a discrete stationary solution which is a second order accurate approximation to the exact stationary solution. Such a scheme is useful for problems involving complex equations of state and/or hydrostatic solutions which are not known in c...
متن کاملSecond order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates
In applications such as astrophysics and inertial confine fusion, there are many threedimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep the spherical symmetry in the cylindrical coordinate system if the original physic...
متن کاملA simple second order cartesian scheme for compressible Euler flows
We present a finite-volume scheme for compressible Euler flows where the grid is cartesian and it does not fit to the body. The scheme, based on the definition of an ad hoc Riemann problem at solid boundaries, is simple to implement and it is formally second order accurate. Results show that pressure is locally and globally second accurate, whereas the accuracy of other variables is between 1 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2006
ISSN: 0271-2091,1097-0363
DOI: 10.1002/fld.1104